Search results for "background [atmosphere]"

showing 10 items of 113 documents

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

2012

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

Astrophysics and AstronomyNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsEarly Universe7. Clean energy01 natural sciencesAsymmetryPartícules (Física nuclear)CosmologyBaryon asymmetryBig Bang nucleosynthesisPower Spectrum0103 physical sciences010306 general physicsTelescopemedia_commonPhysicsFlavor Oscillations010308 nuclear & particles physicsHigh Energy Physics::Phenomenology[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]ConstraintsParametersNeutrino DegeneracyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Comparison of gamma-ray coincidence and low-background gamma-ray singles spectrometry

2011

Aerosol samples have been studied under different background conditions using gamma-ray coincidence and low-background gamma-ray singles spectrometric techniques with High-Purity Germanium detectors. Conventional low-background gamma-ray singles counting is a competitive technique when compared to the gamma-gamma coincidence approach in elevated background conditions. However, measurement of gamma-gamma coincidences can clearly make the identification of different nuclides more reliable and efficient than using singles spectrometry alone. The optimum solution would be a low-background counting station capable of both singles and gamma-gamma coincidence spectrometry.

Astrophysics::High Energy Astrophysical Phenomena[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]010403 inorganic & nuclear chemistryMass spectrometry01 natural sciencesComprehensive Nuclear-Test-Ban TreatyCoincidence030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciences0302 clinical medicineBackground RadiationAir Pollution RadioactiveNuclideGamma ray spectrometryBackground radiationNuclear PhysicsPhysicsAerosolsRadiation surveillanceRadiationta114GermaniumGamma rayGamma-ray spectrometry0104 chemical sciencesSpectrometry GammaGamma Rays22Na
researchProduct

Top-quark pair + 1-jet production at next-to-leading order QCD

2008

Top-quark pair production with an additional jet is an important signal and background process at the LHC. We present the next-to-leading order QCD calculation for this process and show results for integrated as well as differential cross sections.

Background processQuantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsTop quarkLarge Hadron ColliderHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyOrder (ring theory)FOS: Physical sciencesJet (particle physics)Atomic and Molecular Physics and OpticsHigh Energy Physics - PhenomenologyPair productionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::ExperimentDifferential (infinitesimal)
researchProduct

Background subtraction for aerial surveillance conditions

2014

International audience; The first step in a surveillance system is to create a representation of the environment. Background subtraction is widely used algorithm to define a part of an image that most time remains stationary in a video. In surveillance tasks, this model helps to recognize those outlier objects in an area under monitoring. Set up a background model on moving platforms (intelligent cars, UAVs, etc.) is a challenging task due camera motion when images are acquired. In this paper, we propose a method to support instabilities caused by aerial images fusing spatial and temporal information about image motion. We used frame difference as first approximation, then age of pixels is …

Background subtractionPixelbusiness.industryComputer science[SPI] Engineering Sciences [physics]ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONMotion (physics)Image (mathematics)[SPI]Engineering Sciences [physics]Motion estimationOutlierComputer visionArtificial intelligencebusinessRepresentation (mathematics)Aerial imageComputingMilieux_MISCELLANEOUS
researchProduct

Quantitative Cerebral Blood Flow Mapping in Stroke and During Mental Stimulation After Intravenous Injection of 195mAu

1985

The new short life isotope 195mAu has some suitable features for quantitative cerebral blood flow mapping. Its half-life is 30.5 s; therefore an injection can be repeated after 3 min (six half-lives) without any need for background subtraction and with the same specific activity. The calculated whole body radiation dose after three successive administrations of 25 mCi 195mAu amounts to 50 mrad. In comparison to a 99mTc pertechnetate injection it is estimated that the dose to the patients is reduced by a factor of eight (Garcia et al. 1981).

Background subtractionbusiness.industryRadiation doseStimulation99mtc pertechnetatemedicine.diseaseShort lifeCerebral blood flowAnesthesiamedicineWhole bodyNuclear medicinebusinessStroke
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct

A video-based real-time vehicle counting system using adaptive background method

2008

International audience; This paper presents a video-based solution for real time vehicle detection and counting system, using a surveillance camera mounted on a relatively high place to acquire the traffic video stream.The two main methods applied in this system are: the adaptive background estimation and the Gaussian shadow elimination. The former allows a robust moving detection especially in complex scenes. The latter is based on color space HSV, which is able to deal with different size and intensity shadows. After these two operations, it obtains an image with moving vehicle extracted, and then operation counting is effected by a method called virtual detector.

Computer scienceGaussianComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologyHSL and HSVColor spaceVideo analysisShadow eliminationAdaptive background estimationImage (mathematics)symbols.namesake0502 economics and businessShadow0202 electrical engineering electronic engineering information engineeringComputer visionSurveillance camera050210 logistics & transportationPixelbusiness.industry05 social sciencesDetectorVirtual detectorsymbols020201 artificial intelligence & image processingArtificial intelligencebusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Euclid preparation XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis

2022

The combination and cross-correlation of the upcoming $Euclid$ data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of $Euclid$ and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on $Euclid$-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundstatistical [methods]FOS: Physical sciencesAstrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsJoint analysiskosmologia01 natural sciencesmethodsNOpimeä aine[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]mikroaallotSettore FIS/05 - Astronomia e Astrofisicasurveys0103 physical sciencestszsurvey010303 astronomy & astrophysicsPhysicsmethods: statistical010308 nuclear & particles physicsComputer Science::Information RetrievalmaailmankaikkeusAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicscross-correlation115 Astronomy Space scienceCosmic background radiation; Large-scale structure of Universe; Methods: statistical; Surveyskosminen taustasäteilySpace and Planetary Sciencemethodlarge-scale structure of Universepimeä energia[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological forecasts on thermal axions, relic neutrinos and light elements

2022

One of the targets of future Cosmic Microwave Background and Baryon Acoustic Oscillation measurements is to improve the current accuracy in the neutrino sector and reach a much better sensitivity on extra dark radiation in the Early Universe. In this paper we study how these improvements can be translated into constraining power for well motivated extensions of the Standard Model of elementary particles that involve axions thermalized before the quantum chromodynamics (QCD) phase transition by scatterings with gluons. Assuming a fiducial $\Lambda$CDM cosmological model, we simulate future data for Stage-IV CMB-like and Dark Energy Spectroscopic Instrument (DESI)-like surveys and analyze a m…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and Astrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic Astrophysicsearly Universedark matterHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Space and Planetary Sciencecosmic background radiation cosmological parameters dark matter early Universe cosmology: observationscosmology: observationsHigh Energy Physics::Experimentcosmological parametersAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Impact of cosmic inhomogeneities on SNe observations

2009

We study the impact of cosmic inhomogeneities on the interpretation of SNe observations. We build an inhomogeneous universe model that can confront supernova data and yet is reasonably well compatible with the Copernican Principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizeable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectgr-qcCosmic background radiationFOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences114 Physical sciencesGeneral Relativity and Quantum CosmologyCosmologysymbols.namesakeObservational cosmology0103 physical sciences010306 general physicsmedia_commonPhysicsCOSMIC cancer database010308 nuclear & particles physicsCopernican principleRedshiftUniverseLocal Voidsymbolsastro-ph.COAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct